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Abstract. The game of Poker has received much attention recently.
We consider the popular variant Texas Hold’em that is played online
frequently. Based on a huge data base of games played exclusively by
humans we apply several versions of feed forward neural networks and
support vector machines to predict the betting behavior of a player in
each state of the game. Neither of these variants outperform all oth-
ers but a so-called ‘meta-decider’ that makes a prediction based on the
predictions of the ensemble of predictor variants increases the quality
significantly.

1 Introduction

The poker game has become more and more the focus of interest in many scien-
tific papers [1]. Poker is a game with imperfect information as you do not know
the cards your opponents hold and also the community cards are not known in
advance. Hence it is different from e.g. chess where the information about the
whole game state is always identical for every player. You need a little luck but
also a good strategy to win a poker game. An important factor for a good strat-
egy is not only to regard your own cards and the community cards but also to
observe the opponents betting behavior. If you knew which move an opponent
would do in the current game state you could adjust and improve your own strat-
egy. Therefore it is important to create a model of your opponent which predicts
his future action. For human players it is difficult to discover regularities in the
betting behavior of their opponents. Therefore we address this challenge by using
knowledge discovery techniques in order to explore the opponents strategies.

2 The Game of Poker

We consider the poker variant Texas Hold’em [2], which is currently the most
popular one. Before any cards are dealt the two players to the left of the dealer
(the button) put a predetermined amount of money (blinds) into the pot. Two so
called hole cards are dealt to every player which are hidden from the opponents.
During the game five community cards are put on the table. There are four
different betting rounds where the player can act – pre-flop (no community
cards are on the table), flop (three community cards are revealed), turn (four
community cards) and river (all five community cards). A player has different



possibilities to act. He can fold which means that he looses all the money invested
yet and quits the game. A player checks by just passing the action to the next
player and not putting any money into the pot. If the amount of money he
puts into the pot is just enough to remain in the game, the action is named
call. Check and call are mostly considered as the same action because the player
neither quits the game nor ups the ante. Raise is the term for the action if a
player puts long odds into the pot and hence all other players have to react to
stay in the game. If there are at least two players who remain in the game after
the river round the showdown occurs. Now the player chooses five cards from his
hole cards and the community cards to compose a so-called hand. The player
who shows the hand with the highest value wins the game and gets all the money
from the pot.

3 Techniques for Predicting Poker Bets

To classify poker game states into classes which represent the players’ actions
fold, check/call and raise, different supervised learning techniques are used.

3.1 Artifical Neural Networks

Artifical Neural Networks (ANN) have been applied successfully in many re-
search fields to solve classification problems [3]. For opponent modelling they
have already been used by Davidson [4, 5]. Inspired by the human central ner-
vous system, an ANN consists of artificial neurons which are connected with
weighted links. If the sum of the weighted links of a neuron reaches a defined
bias the neuron is active and ‘fires’. So the ANN produces an overall output
which is representative for a class. Classification with ANN is divided in a learn-
ing and a testing phase. In the learning phase input vectors, which represent a
game state, are applied to the net and the produced output is compared with
the real output. When a wrong output occures, a learning algorithm adjusts the
weights in the ANN to produce the correct output. After several iterations the
training stops and the classification is tested by new input vectors to check the
generalization of the ANN. In our experiments we used multilayer perceptrons, a
special kind of ANN. We applied the backpropagation and resilient-propagation
algorithm [6] to adjust the weights in the ANN.

3.2 Support Vector Machines

A Support Vector Machine (SVM) [7] is a classification method which maps the
input data into a high dimensional space. In that space the SVM constructs a
hyperplane which separates the data points in two classes. The margin of this
hyperplane is maximized so that the distance between the data points from
different classes is as large as possible. Since mapping the input data into a
high dimensional space and constructing the hyperplane is very complex and
timeconsuming the so-called kernel trick is applied. With the kernel trick the



separation of the classes is performed without explicitly mapping in that space.
Hence the classication can be applied much faster. So-called C-SVM use slack
variables to allow classification errors. The C determines a trade-off between the
classification error and maximizing the separating hyperplane. As the SVM is a
binary classifier but we need a separation in more than two classes we applied the
One-Versus-All-Multiclass-SVM. Therefore several single SVM are constructed
which separate one class from the rest. The single SVM with the highest output
assigns the class.

3.3 Meta-Decider

The output of the ANN and SVM can be considered as a distribution of the
classes. Normalized you get a probability triple PT = (f, c, r) which shows the
probability P (fold), P (check/call) and P (raise) for the particular action [5].
The one with the highest value determines the class. Since we constructed many
different deciders, it is hard to decide which prediction should be taken finally.
So we constructed two meta-deciders which combine the probability triple of all
single deciders. The first one determines the highest value of the particular class,
the second one calculates the average of all values for a particular class from the
different deciders and a new probability triple is constructed.

4 Database and Experimental Setup

As mentioned before we classify the current game state in the classes fold,
check/call and raise. The state is represented by several attributes describing
the boardcards and the opponent as well as other generic information. All at-
tributes are shown in table 1 and they are scaled in the interval [0, 1]. The poker
data stems from Michael Maurer’s IRC Poker Database [8]. There are approx-
imately 107 of played poker games available which were logged by an observer
program from 1995 to 2001. All players whose betting behavior we tried to ex-
plore played in a poker room (nobots) where poker bots were not allowed so
that games are played human players only. The blinds are 10 and 20 Chips and
there is no limit of the betting amount. We have only generated and classified
input vectors for the rounds flop, turn and river but not for pre-flop. The betting
behavior before the flop differs a lot from the behavior after the flop [4] and we
have expected better results omitting the pre-flop round. For every player we
have generated eleven training and test sets, the first in chronological, the other
in uniformly distributed order.

In pre-experiments we determined parameters for the learning algorithms
Backpropagation and Resilient-Propagation to adjust the weights in the ANN
as well as parameters of the kernels for the SVM.

4.1 ANN Setup

The ANN experiments have been conducted with the Stuttgart Neural Network
Simulator [9]. It provides two modules for backpropagation (BackpropMomen-



Table 1: Input attributes

attribute description type

queen queen on board boolean
king king on board boolean
ace ace on board boolean
pairOnBoard pair on board boolean
color (max. # of identically colored cards -1) / 4 real
straight straight possible boolean

aggressivePlayerBehind # of aggressive players behind / active players real
numberBets # of bets before the player (0: 0, 1: 0.5, ≥2: 1) real
position relative position to the other players real
bankroll bankroll of player relatively to the chipleaders bankroll real
blind player is in big or small blind boolean
betLastRound player bet last round boolean
playerChipleader player is chipleader boolean
bankrollActiveChipleader relative bankroll to active player with most chipstack real
bankrollActiveLowstack relative bankroll of active player with lowest chipstack to the observed player real
playfrequency frequency of playing the flop real
betfrequency frequency of betting real

stage current stage (flop: 0, turn: 0.5, river: 1) real
playersDealtCards # players dealt cards / 10 real
pActive # active players / 10 real
chipleaderInGame chipleader is one of active players boolean
potsize current potsize / all available chips at the table real

tum) and resilient-propagation (RProp). Table 2 shows the parameters applied.
Here, η is the learning rate and β is the momentum term which decreases the
learning rate in rough and increases it in smooth error planes. γ is the flat spot
elimination term and dmax the maximum error which is ignored without chang-
ing the weights in the ANN. The latter is able to avoid overfitting. Resilient-
Propagation uses alterable learning rates. They are limited by η− and η+. ∆0

and ∆max are the start and the maximum values for the amount of the weight
change. With the term α you can control the maximum sum of all weights in the
ANN. With Backpropagation the minimum error of the test set has appeared
at 20 iterations, with Resilient-Propagation already at 15 iterations. We have
applied a logistic activation function and the identity output function for all
neurons. The ANNs consist of 22 input neurons and 25 neurons on one hidden
layer. The number of output neurons corresponds to the number of possible
player actions. So, we use four neurons to distinguish between fold, check, call,
and raise. In another ANN we unite check and call resulting in three output
neurons.

Table 2: Parameters of Backpropagation and Resilient-Propagation Learning.

Output Backpropagation Resilient-Propagation

neurons η β γ dmax α η− η+ ∆0 ∆max

3 0.2 0.37 0.1 0.1 3.4 0.5 1.2 0.1 50

4 0.14 0.35 0.1 0.1 4 0.5 1.2 0.1 50



4.2 SVM Setup

The data mining tool RapidMiner (former YALE) [10], [11] provides the imple-
mentation LIBSVM for the SVM from Chih-Chung Chang and Chih-Jen Lin
[12]. We applied two different kernels. The first one is a linear kernel 〈x,x′〉
(dot product) with the parameter C = 5. The other one is a polynomial kernel
(〈x,x′〉 + 1)2 with C = 100.

4.3 Different enhancements

In order to improve the classification, we experimented to distinguish between
the action check and call. Hence we have the four classes fold, check, call and
raise. After the classification process, the correct classified samples of the classes
check and call are merged again to be comparable to the results with just three
classes.

Another method we tried to enhance the classification ratio is to apply clas-
sificators for every particular round, flop, turn and river. Theses classificators
learn only with samples of that particular round and are tested with samples of
that round. For comparison we used an all-classifier which classified all rounds
at once based on the complete data sets.

5 Experimental Results

Table 3 shows the best results the particular classification methods achieved. On
average a classification ratio of approximately 72% is obtained. The turn round
has been classified best and the river round worst. Player 6 is one which is not
well predictable, in contrast to player 5. The best classification ratio is achieved
in the flop round for player 2 with 84%.

Table 3: Best classification ratio of particular rounds and players

Round Pl. 0 Pl. 1 Pl. 2 Pl. 3 Pl. 4 Pl. 5 Pl. 6 Average

All 0.7046 0.7166 0.7645 0.7168 0.6998 0.7870 0.6092 0.7141

Flop 0.6747 0.7351 0.8428 0.7179 0.7334 0.7804 0.6010 0.7265

Turn 0.7566 0.7250 0.8046 0.7317 0.6842 0.7974 0.6457 0.7350

River 0.7091 0.6978 0.6179 0.7017 0.6656 0.8077 0.6125 0.6875

Average 0.7113 0.7186 0.7574 0.7170 0.6957 0.7931 0.6171 0.7158

5.1 Separation of Check from Call

Table 5.1 (left) is an examplary so-called confusion matrix for four classes. The
columns show the classes which the classification method predicted and the rows



show the real class. The values in the diagonal represent the correctly classified
samples and the last cell shows the sum of them. In this example a real fold is
predicted 30 times correctly as a fold, never as a check but 4 times incorrectly
as a call and 2 times as a raise. As you can see the classification method has
classified 232 of 345 samples correctly which corresponds to a classification ratio
of 67.2%. By ”merging” the results of check and call as seen in table 5.1 (right)
the classification ratio is enhanced to 67.5%.

Table 4: Left: confusion matrix with CR = 67.2% (232/345).
Right: “merged” confusion matrix with CR = 67.5% (233/345).

pred. pred. pred. pred. P

fold check call raise

fold 30 0 4 2 36

check 0 109 0 10 119

call 20 1 7 15 43

raise 7 51 3 86 147
P

57 161 14 113 232

pred. pred. pred. P

fold call raise

fold 30 4 2 36

call 20 117 25 162

raise 7 54 86 147
P

57 175 113 233

Both enhancements and deterioration occur by using four classes as shown
in table 5. The best enhancement is achieved for player 4 with 0.0228 in the flop
round and the ANN with resilient propagation. For player 5 deteriorations up to
0.0416 (river round and ANN with backpropagation) are actually gained but just
enhancements up to 0.016 (turn round and ANN with backpropagation). Hence
in some cases it is worthwhile to add a fourth class but in many other cases it
is not. But there is another interesting observation. As you have already seen in
table 5.1 (left), a real fold has never been predicted as a check and vice versa.
There are hardly any wrong classifications between check and call. This behavior
occured in almost all other confusion matrices of every player and round. This
means that first the classification methods are able to seperate between fold and
check very well and second that with the very good separating ability between
check and call a specific poker rule has been learned which the classification
method does not know explicitly. If there is a game state where a check is not
a valid action because a player has raised before then neither the ANN nor the
SVM predict a check (less than 0.5%).

Table 5: Maximum absolute deviation of the classification ratio by using 4 instead of
3 classes

player 0 1 2 3 4 5 6

max. enhancement 0.0207 0.0122 0.0123 0.0208 0.0288 0.0160 0.0278

max. deterioration 0.0140 0.0159 0.0292 0.0143 0.0163 0.0416 0.0133



Figure 5.1 shows the average classification ratios for all players by the ANN
with backpropagation (BP) and resilient propagation (RE) and by the SVM
with the linear and the polynomial kernel. The reference line you see in the
figures is the result of a simple classificator. This simple classificator always
predicts the action a player has chosen most in that particular round. Thus all
results above the reference show that the application of classification methods are
useful. The lines between the points are just for clarity purposes. Some points
are covered by other points but along the lines you can identify the hidden
points. You can see in the figures that for both ANN and SVM the differences of
the average classification ratios between 3 and 4 classes are marginal. Also the
results in comparison betwenn ANN and SVM are nearly identical with some
small deviation. But in comparison to the reference almost all methods classify
better, e.g. for player the classification by the ANN and SVM is approximately
0.2 above the results of the simple classificator.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

0 1 2 3 4 5 6

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ra

tio

Player

Comparison 3 and 4 classes, round: all, classification method: ANN

Reference
ANN BP 3
ANN BP 4
ANN RE 3
ANN RE 4

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

0 1 2 3 4 5 6

A
ve

ra
ge

 c
la

ss
ifi

ca
tio

n 
ra

tio

Player

Comparison 3 and 4 classes, round: all, classification method: SVM

Reference
SVM Lin. 3
SVM Lin. 4
SVM Pol. 3
SVM Pol. 4

Fig. 1: Comparison between 3 and 4 classes, round all: ANN (left) vs. SVN (right).

5.2 Round-specific Classificators

The application of classificators which only classify samples of a particular round
has not lead to the expected results. Analogical to the distinction between check
and call there are enhancements as well as deviations as you can see in table 6. In
some cases, e.g. the turn round of player 0 and player 6, the specific classificator
works better than the all-classificator. By contrast for player 4 and player 5 the
turn-classifier only achieves worse results.

In figure 2 you can see boxplots of the all-classifier (f.A.) next the round-
specific classifier for the flop round. For comparison reasons the reference is
plotted again. For player 0, player 4 and player 5 the classification ratios are
much better than the reference. For player 1, player 2, player 3 and player 6
the archieved results are in average as good as the reference. In some cases the
reference performs better, e.g. the SVM with linear kernel for player 6. Strange
outlier occur for the ANN with backpropagation in case of player 5.



Table 6: Maximum absolute deviation of the classification ratio by using round-specific
classificators.

pl. 0 pl. 1 pl. 2 pl. 3 pl. 4 pl. 5 pl. 6

max. enhancement F 0.0042 0.0001 0.0112 0.0034 0.0573 0.0383 0.0381

T 0.0385 0.0020 0.0128 0.0154 -0.0122 -0.0021 0.0285

R 0.0256 0.0051 0.0402 0.0143 0.0033 0.0296 0.0310

max. deviation F 0.0421 0.0180 0.0148 0.0115 0.0139 0.0016 0.0033

T -0.0045 0.0075 0.0138 0.0280 0.0472 0.0215 -0.0030

R 0.0217 0.0242 0.0374 0.0273 0.0315 0.0073 0.0097
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5.3 Meta-Decider

We now have many results of the different classification methods. The meta-
decider combines all these results as described in section 3.3. Figure 3 displays
boxplots for the ANN and SVM using the all-classifier in comparison to the meta-
deciders. Mostly the meta-deciders perform as well as the best single decider.
In many cases it gains even better results, e.g. for player 0, player 3 and player
6. By the combination of the results the system is more robust and not that
vulnerable against outliers. The evolved probability triples can be used by poker
bots as e.g. Poki from the UACPRG. This bot uses the probability triple for
their betting strategy and the update of weight matrices which represent the
conditional probability for the hole cards of the opponents [1].
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6 Conclusions

Summing up we can say both, ANN and SVM are appropriate methods for op-
ponent modeling. No method performs always better than the other one. But
the gained results are always of higher quality than those from the simple classi-
fier. The separation between the actions check and call as well as the application



of round-specific classificators achieved enhancements but also deteriorations.
However the combination of the decisions by the meta-decider lead to very good
results. Both methods have learned the poker specific rule that a check is not
possible if a player has already raised before. Potentially there are further en-
hancements possible by applying other classification methods or using more or
less attributes for describing the current game state.
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